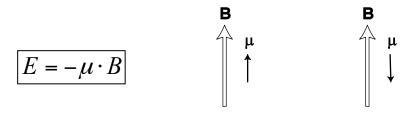
NMR, the vector model and the relaxation

Reading/Books:

One and two dimensional NMR spectroscopy, VCH, *Friebolin* Spin Dynamics, Basics of NMR, Wiley, *Levitt* Molecular Quantum Mechanics, Oxford Univ. Press, *Atkins*. NMR: The Toolkit, Oxford Science Publications, *Hore, Jones and Wimperis* Understanding NMR Spectroscopy, Willey, *Keeler*

Effect of the Magnetic Field on Matter

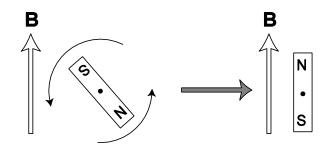
Interaction of Magnetic Field and Matter: Macroscopic Magnetism



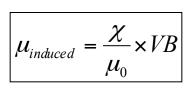
Low Energy

High Energy

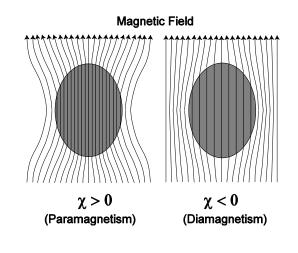
Permanent magnetic moment, e.g. magnets:



Induced magnetic moment



V: Volume χ : Magnetic susceptibility B: Applied field $\mu_0 = 4\pi \times 10^{-7}$ H/m



Effect of the Magnetic Field on Matter

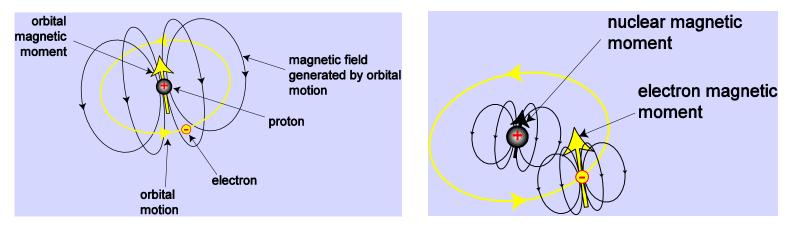
Interaction of Magnetic Field and Matter: Macroscopic Magnetism

Source of magnetism:

1) circulation of electron currents (negative contribution to susceptibility)

- 2) magnetic moments of electrons (positive contribution to susceptibility)
- 3) magnetic moments of nuclei (positive contribution to susceptibility)

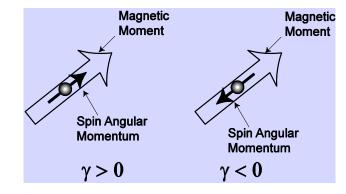
with 1 and 2 > 3



Spins and magnetism:

$$\hat{\mu} = \gamma \hat{S}$$

 γ = gyromagnetic (or magnetogyric) ratio
 (positive or negative and characteristic of the nuclei).



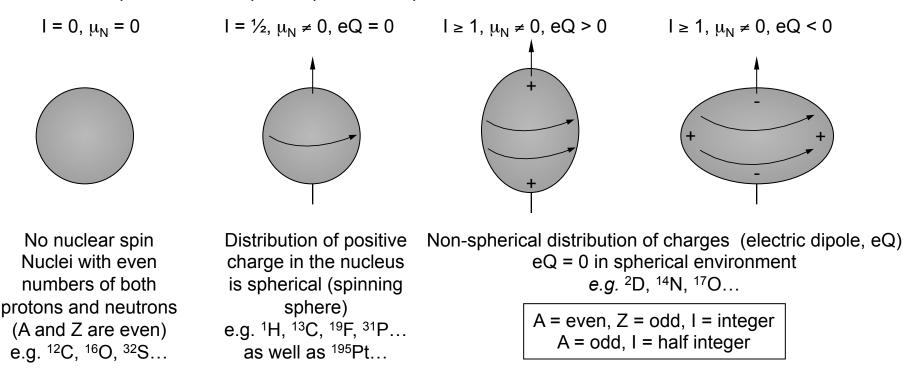
The magnetic moment of the electron has been predicted by Dirac.

However, today the magnetic moments of quarks and nucleons, and thereby nuclei, are not year understood.

Effect of the Magnetic Field on Nuclei

Properties at the atomic level: Nuclear Spin Quantum Number, I

For protons and neutrons: $I = \frac{1}{2}$ For atoms: I depends on how spin are paired or unpaired:



Unpaired nuclear spins $(I \neq 0) \rightarrow$ nuclear magnetic moment (μ_N) . Spinning charges \rightarrow angular momentum (*I*).

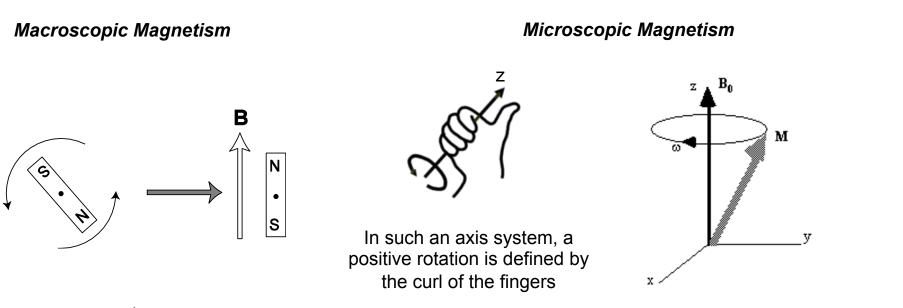
The allowed orientation of m are indicated by nuclear spin angular momentum quantum number, m_l with $m_l = l$, l-1, ..., -l+1 and l, a total of $2m_l+1$ states

This is associated with a magnetic moment μ , a characteristic of the nuclei: $|\vec{\mu}_N|$

 $\vec{\mu}_{\scriptscriptstyle N}=\gamma\hbar\vec{I}$

CHI551

Effect of the Magnetic Field on one Nucleus



For $\gamma > 0$ H_0 and H_0 and $\mu_N = -\gamma \hbar \vec{I}$

В

 H_0 exerts a force (torque) on μ_N , causing a precession, perpendicular to μ_N and H_0 , with a frequency ω_0 (Larmor frequency):

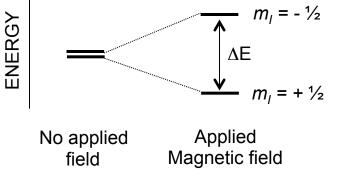
$$\vec{\tau} = \vec{\mu} \times \vec{H}_0$$

$$\omega_0 = -\gamma H_0$$

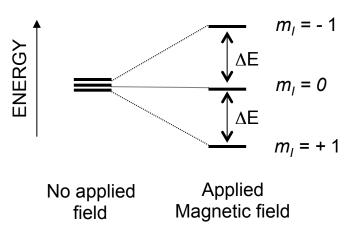
γ = gyromagnetic (or magnetogyric) ratio, associated with the angular momentum *I* and a characteristic of the nucleus ¹H, I =¹/₂; γ = 267.522×10⁶ rad/s/T (-500 MHz at 11.74 T) ²H, I =1; γ = 41.066×10⁶ rad/s/T (-76.75 MHz at 11.74 T) ¹³C, I =¹/₂; γ = 67.283×10⁶ rad/s/T (-125 MHz at 11.74 T) ²⁹Si, I =¹/₂; γ = - 53.190×10⁶ rad/s/T (99.34 MHz at 11.74 T)

Effect of the Magnetic Field on one Nucleus Energies of spin states

For I = $\frac{1}{2}$, $m_1 = \pm \frac{1}{2}$

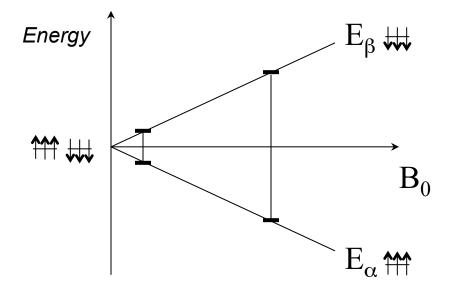


 μ_N in the direction of the applied field for $m_I > 0$ μ_N opposed to the applied field for $m_I < 0$ μ_N perpendicular to the applied field for $m_I = 0$ For I = 1, $m_I = -1$, 0, 1



 Δ E: Energy difference between two states, it is associated with a radio frequency v. **This is what will be detected in the NMR experiment.**

$$\Delta E = \gamma \hbar H_0 \Delta m_I = \hbar \omega_0$$



For ω = 60 MHz B₀ = 1.4092 Tesla For ω = 500 MHz B₀ = 11.740 Tesla Note that B_{Earth} = 50 μ T From quantum mechanics:

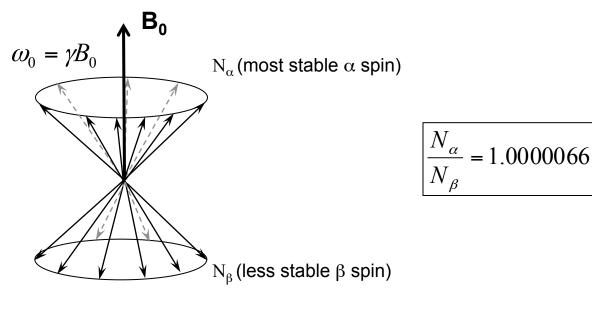
$$\hat{H} = -\bar{\mu} \cdot \bar{H}_0 = -\gamma_N \hbar H_0 \hat{I}_z$$
$$E = -\gamma \hbar m_I H_0$$
$$\Delta E = \gamma \hbar H_0 \Delta m_I = \hbar \omega_0$$

Boltzman Distribution:

$$\left|\frac{N_{\beta}}{N_{\alpha}} = e^{\frac{-(E_{\beta} - E_{\alpha})}{kT}} = e^{\frac{-\gamma\hbar B_{0}}{kT}} \cong 1 - \frac{\gamma\hbar B_{0}}{kT}\right|$$

At room temperature, the ratio

 $\frac{N_{\alpha}}{N_{\beta}} = 1.0000066$



Net magnetization

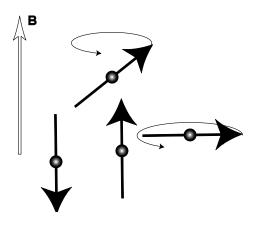
aligned with B_0 (not the spins !) No net magnization perpendicular to B_0

Note that:

- M₀ << B₀ and cannot be easily detected directly!
- Low sensitivity of NMR (sensibility is proportional to $B_0^{3/2}$, hence the development of high field NMR spectrometer).

A more real model:

Effect of B₀ on of sum of spins



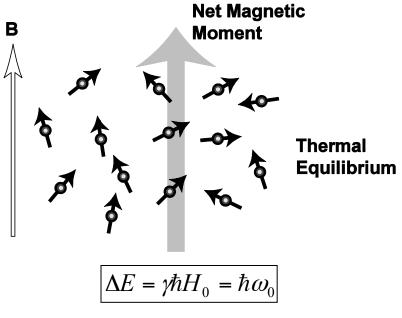
However, due to the isotropic distribution of spins, there is no contribution to the magnetism of the material.

Origin of net magnetization:

Molecular motions

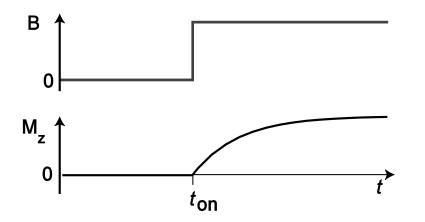
→ Induction of overall fluctuating fields (time scale = nanosecond), and a biased magnetic moment aligned with B_0 (longitudinal magnetic moment).

→ Stable anisotropic distribution of nuclear spin polarization, also named *thermal* equilibrium



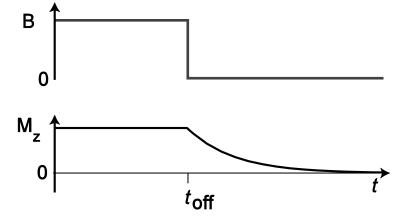
A more real model:

Build-up of Longitudinal magnetization (sudden introduction of a sample in B₀)



$$M_{z}(t) = M_{0}(1 - \exp[-\frac{(t - t_{on})}{T_{1}}])$$

Loss of Longitudinal magnetization (sudden removal of a sample from $\mathsf{B}_0)$



$$M_{z}(t) = M_{0} \exp[-\frac{(t - t_{off})}{T_{1}}]$$

Longitudinal relaxation (see Section on relaxation)

CHI551

Observation of the NMR phenomenon Sequences RMN and magnetization

What happens when M_0 , aligned with the z axis, is moved away from its equilibrium position (effect of B_1)? It will vary under the control of two factors:

- 1) Torque $\vec{\tau} = \vec{\mu} \times \vec{B} = \gamma \vec{I} \times \vec{B}$
- 2) Relaxation (physical phenomena, which will bring back the system to equilibrium)

The resulting motion will be a precession around the magnetic field at the Larmor frequency ω_0 (it is like a gyroscope in a gravitational field) with a dissipation of the energy to return to the equilibrium position

$$\omega_0 = 2\pi v_0 = -\gamma B_0$$

How does the magnetization is moved away from its equilibrium position?

Application of a B₁ field perpendicular to B₀

- Effect of B₁ field perpendicular to B₀:

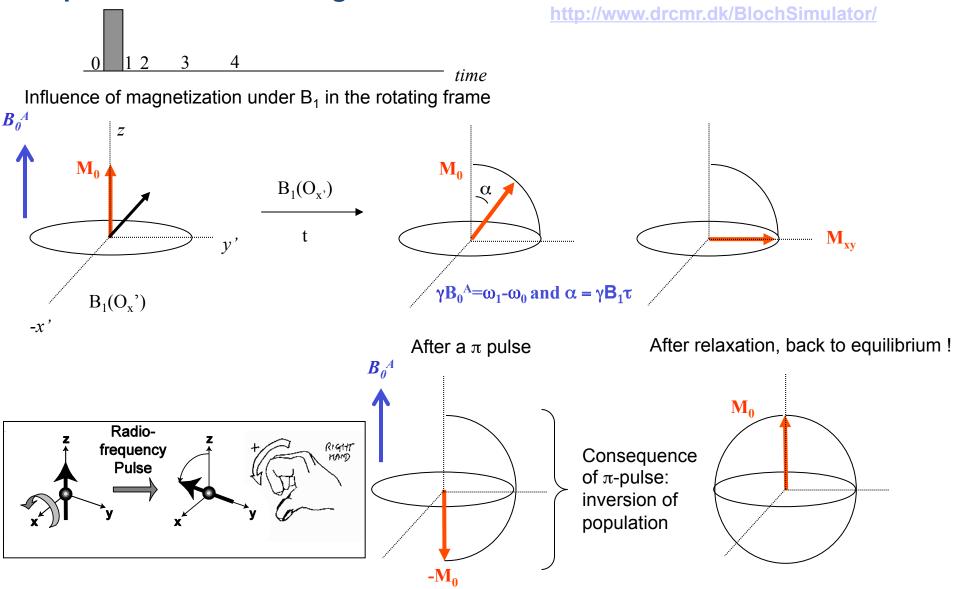
Magnetization will be precessing around B_0+B_1 . However, because $B_1 << B_0$ the effect will be only very small.

- Effect of a B₁ field perpendicular to B₀ but rotating in the O_{xy} plane at ω close to ω_0

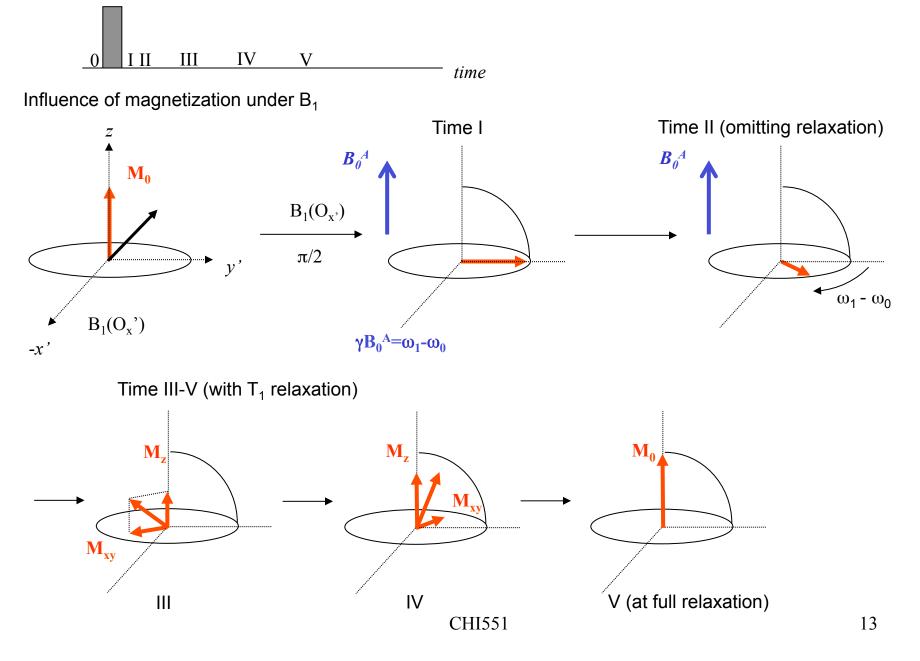
→ Resonance effect, which corresponds to a adsorption of a continuous wave at ω_0 and which is like having a B₀+B₁ field (very effective to tip the magnetization in the xy plane).

 B_1 is the high frequency alternative field, which is generated by a solenoid oriented perpendicular to the z axis. The intensity and the duration of the radiofrequency wave are controlled. This corresponds to two rotating fields in opposite direction

Sequences RMN and magnetization

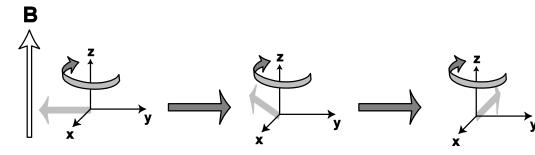


Simple NMR experiment (sequence) and magnetization



Sequences RMN and magnetization

 M_{xy} in the laboratory frame

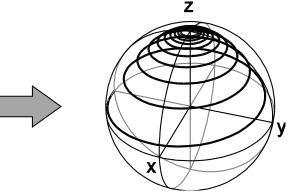


$$M_{y}(t) = M_{0} \sin(\omega_{0}t) \exp\left\{-t/T_{2}\right\}$$
$$M_{x}(t) = -M_{0} \cos(\omega_{0}t) \exp\left\{-t/T_{2}\right\}$$

 M_{xy} magnetization (transverse magnetization) decays slowly, because of the inhomogeneous field leading to a return to equilibrium (net magnetization along B₀). This is called transverse magnetization (T₂).

For small molecules, $T_2 \sim T_1$

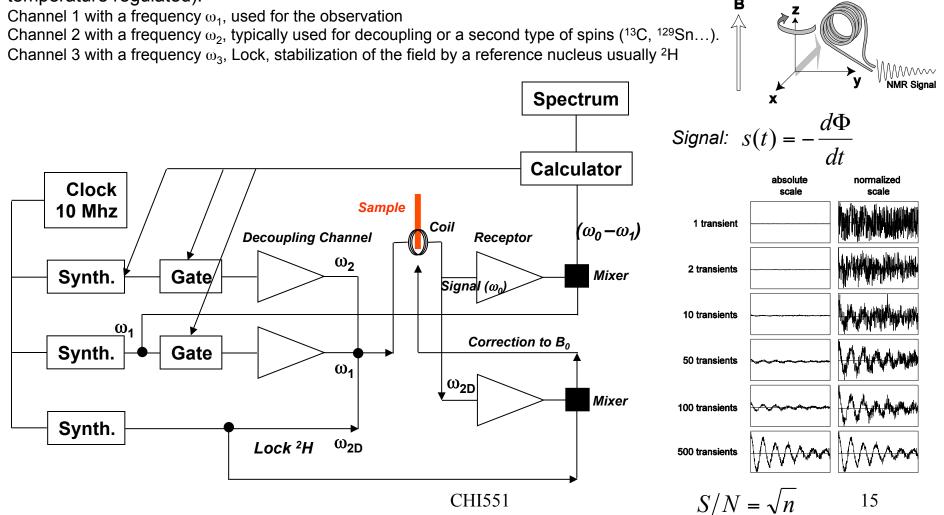
i.e. nuclear spins precess millions of Larmor precession cycles before losing their synchrony.



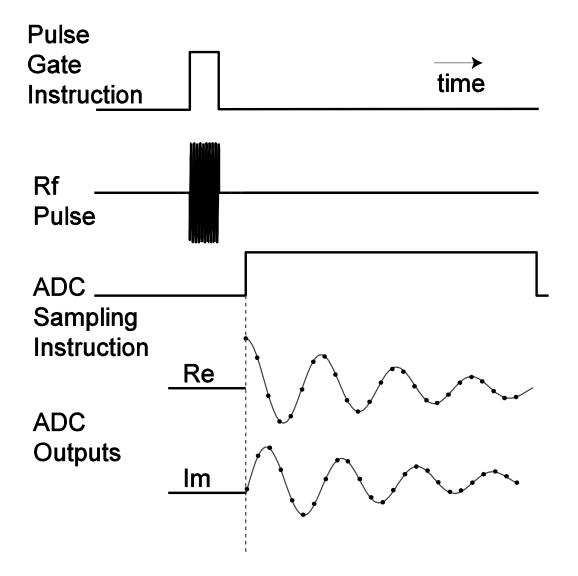
Observation of the NMR phenomenon Spectrometer

NMR probe: A coil oriented perpendicular to $B_{0 is}$ used to generate B_1 and to detect the signal.

The signal of frequency ω_0 close to ω_1 is amplified and compared to ω_1 giving ($\omega_0 - \omega_1$), which is the chemical shift. A second coil provide a second field B₂, generation of highly precise frequencies (ω_n) using a clock (Quartz, 10 MHz temperature regulated):



Observation of the NMR phenomenon Rf pulse and signal



NMR Signals

(Real)

(Imaginary) $\underbrace{ \left\{ \bigwedge_{i=1}^{n} \bigwedge_{i=1}^{n} \bigwedge_{i=1}^{n} \bigwedge_{i=1}^{n} \sum_{i=1}^{n} S_{B}(t) \approx \sin(\omega_{0}t) \exp\{-\lambda t\} \right\}$

For a one-line spectrum:

$$s(t) = \cos[(\omega_1 - \omega_0)t] \exp\{-\lambda t\} + i \sin[(\omega_1 - \omega_0)t] \exp\{-\lambda t\}$$
$$s(t) = a \exp\{i(\omega_1 - \omega_0) - \lambda t\}$$

For a spectrum containing ℓ lines:

0.2

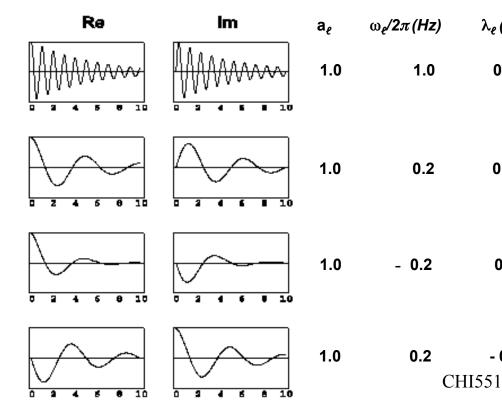
0.2

0.2

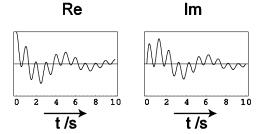
- 0.2

For a each lines: One frequency ω_{ℓ} , One damping rates λ_{ℓ} , One amplitude (a_{ℓ}) .

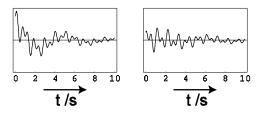
Im



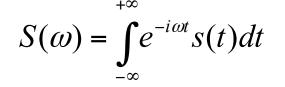
 $\lambda_{\ell}(s^{-1})$ e.g. 2 vs. 4 lines of different frequencies

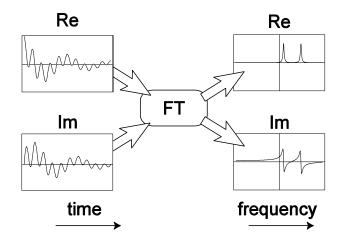


Re

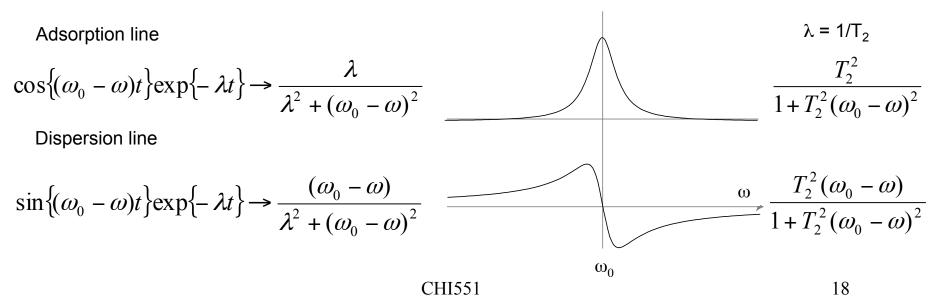


NMR Signals and Fourier Transformation





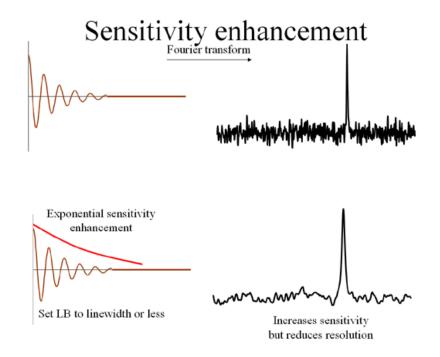
Line shapes (Lorenztian)



NMR Signals, Fourier Transformation and Apodization Functions

Apodization function (A): FID*A before FT. Multiplying FID by an apodization function allows the improvement of signal to noise ratio or line width.

Typically exponential decay, exp(-at), is used in order to obtain an increased S/N at the expense of line broadening.



Note that a truncated FID (experimental/acquisition time shorter than FID) corresponds to multiplying the FID by a step function, whose FT corresponds to sin(ax)/x. This will induced wiggles at each peak of the spectrum.